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ABSTRACT

Much work has been done on Neural Machine Translation, but most of it requires
the availability of a large parallel corpora to train on, which is not always readily
available. Unsupervised methods also exist that work by encoding both the lan-
guages in consideration to a common latent space, and then decoding them to the
target language as required. This work aims at an accurate implementation of the
work presented in Lample et al. (2017), and train it on a non-parallel corpora of
English and Catalan languages. Baseline implementation is evaluated using BLEU
score metric. We also hypothesize that adding the GCN layers would optimize the
existing representations.

1 INTRODUCTION

Machine Translation is a classical problem in Natural Language Processing with vast applicability.
Recent surges in the area have been dominated by Deep Neural Networks, like Sutskever et al.
(2014) Kalchbrenner & Blunsom (2013). Most of these models are a variation of an encoder-decoder
setting, where they encode a source language to some latent representation and then try to generate
a translation in the targeted language, through the latent representations. This has become a key
paradigm in Neural Machine Translation.

After being introduced by Sutskever et al. (2014), the Seq2Seq model has been at the heart of various
state of the art models in various NL tasks other than MT, such as question-answering Xiong et al.
(2016)and abstractive text summarization Nallapati et al. (2016).

The performance of these neural translation methods have become exceptional these days even
surpassing that of a human translator in some cases (Table 9 Wu et al. (2016)) when provided with a
large enough parallel corpora and translating isolated sentences is tough. But in cases when we do
not have such large corpora i.e. in low-resource languages, neural machine translation models have
suffered to produce results.

This is the case for a wide variety of languages such as Basque or even language pairs of popular
languages such as German-Russian. This has led to work in unsupervised machine translation,
especially with non-parallel corpora such as Lample et al. (2017), Artetxe et al. (2017). These
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model represent interesting directions of work as they try to learn a representation that is agnostic
to the involved languages, hence one can learn translation for low-resource languages by using
high-resource languages like French and English. This is akin to the work done in style-transfer in
vision Gatys et al. (2015) as there, they try to learn a common representation for images drawn by
various artists and then transfer style of one artist to another artist’s image.

In this work, we study the work introduced in Lample et al. (2017), and attempt a faithful implemen-
tation of the model and algorithm. The subsequent sections deal with the model thus used, delving
into some related works that inspire the model. The various components of the model are then
explained using appropriate motivations. Section 4 explains the data set used, the training procedure
employed and the results thus obtained. Lastly, we conclude the report with a discussion on the
results and further augmentations to the model, including a GCN-based autoencoder Bastings et al.
(2017) impose structure into the model.

2 RELATED WORKS

2.1 NMT WITH NON-PARALLEL CORPORA

There have been very few previous attempts at developing a general machine translation system with
only monolingual corpora and the absence of any other kind of supervision. Monolingual data has
been widely used to improve translation quality in semi-supervised scenarios(Irvine & Callison-Burch
(2016)). Work on zero-resource machine translation has relied on some kind of external supervision
either from language pairs different from the ones being translated(Chen et al. (2017)) or from
different modalities(Nakayama & Nishida (2016)). The work of Lee et al. (2016) has focused on
developing a common latent representation but on a character-level limiting it to languages having
same alphabets.

Work by Conneau et al. (2017a) has achieved state-of-the-art results in word translation without any
parallel data. They seek to learn a mapping from the latent space of L1 to L2. This is done in 2
steps - first, using adversarial training, in which the discriminator is trained to distinguish between
the target embeddings and mapped source embeddings , while the mapping is trained to fool the
discriminator, and second, the mapping obtained from adversarial training is fine-tuned to fit the
target embedding using the closed-form Procrustes solution with more frequent words as anchor
points. Translation is performed by finding nearest neighbors using an unsupervised selection metric.
The training, validation and dictionary generation are completely unsupervised. We will use this
bilingual dictionary to generate word-by-word sentence translations to initialize our model.

2.2 STYLE TRANSFER

Style transfer is a particular technique that has come from Computer Vision. It deals with generating
images that are of a given style from a given test image. Hence it also deals with a similar problem
on a broad level, of translating from source to a target image.

The technique used is based upon two neural models that are able to effectively extract the style and
the spacial features from the image separately. The style image is passed from the style capturing
neural net and the test image is passed through the spacial neural net to generate their representations
respecitvely. Finally to get style transfered image, a noise image is cycled through both these networks
minimizing the gap between the style representations (between noise and style image) and the spatial
image (noise and spacial image) hence over multiple iterations the noise image is learnt to be the
style transfer image of it.

2.3 UNSUPERVISED MACHINE TRANSLATION

In the next section we shall describe the model and its components, and provide appropriate motiva-
tions for each part. The final objective function is
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L(θenc, θdec,Z) =λcd[Lcd(θenc, θdec,Z , tgt, src) + Lcd(θenc, θdec,Z , src, tgt)]
+ λauto[Lauto(θenc, θdec,Z , src) + Lauto(θenc, θdec,Z , tgt)]
+ λadvLadv(θenc,Z |θD)

The losses are weighed using the hyperparameters, and are computed via cross validation. Cross
validation is measured in terms of BLEU scores between the input sentences and ’back-translations’
of the translation of input sentences. The model is initialized by the word-by-word translations of
sentences generated by Conneau et al. (2017a). Our model tries to incorporate the same principles
as this model and hence contains auto encoder , cross domain and adversarial losses as well. The
difference between our proposed model and this model lies in the encoder architecture where we use a
GCN layer after the LSTM. Further details about are model have been described in the later sections.
We will be comparing our results with the word-by-word translations produced by unsupervised
dictionaries generated by MUSE and the original model without GCN to observe the changes in
BLEU scores which adding structure to the representation provides.

3 THE MODEL

The model proposed in Lample et al. (2017) tries to align the latent representations of a sentence and
its translation in the latent space. This core principle advocates a language-independent representation
with language-specific encoders and decoders. To incorporate this principle, their architecture tries
to ensure two things –the first is to reconstruct a sentence in one language from a noisy version
of it and the second is to obtain the correct translation of a sentence given a noisy version of the
source as input. The auto-encoder loss (Lauto(θenc, θdec,Z , src),Lauto(θenc, θdec,Z , tgt), one for
each language) accounts for the reconstruction in same language. For defining cross domain loss,
source sentence is translated into target language, corrupted and then translated back to the source
language. This cross-domain loss(Lcd(θenc, θdec,Z , tgt, src),Lcd(θenc, θdec,Z , src, tgt), one for
each direction) accounts for the error in translation from a corrupted source. Finally a discriminator
is trained to identify the language from which the given embedding is generated. The encoder is
trained to fool the discriminator which gives rise to the adversarial loss(Ladv(θenc,Z |θD)), θD is
the encoder parameter). The encoder used is a bidirectional LSTM where Z denotes the embeddings
for the monolingual data. The encoder and decoder parameters are shared between the languages.

3.1 PROBLEM DEFINITION

We denote the dataset of sentences in the source domain by Dsrc and another dataset in the target
domain by Dtgt.

Let us denote by WS the set of words in the source domain associated with the (learned) words
embeddings ZS = (zs1, . . . , z

s
|WS|), and by WT the set of words in the target domain associated with

the words embeddings ZT = (zt1, . . . , z
t
|WT|), Z being the set of all the embeddings.

3.2 MODEL

The model consists of the following parts:

• Encoder for encoding the source sentence to latent space
• Decoder for decoding the target sentence from the latent space
• Discriminator to classify between the encoding of source and target sentences.
• Model starts with an unsupervised translation model obtained by making word-by-word

translation of sentences.

Given an input sentence of m words x = (x1, x2, . . . , xm) in a particular language l, l ∈ {src, tgt},
the encoder eθenc,Z(x, l) computes a sequence of m hidden states z = (z1, z2, . . . , zm) by using the
corresponding word embeddings, i.e. ZS if l = src and ZT if l = tgt; the other parameters θenc and
θdec are instead shared between the source and target languages.
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The decoder dθdec,Z(g, l) generates output sequence y = (y1, y2, . . . , yk), , where each word yi is in
the corresponding vocabulary Wl.

The following figure demonstrates the losses and model structure.

Figure 1: Illustration of proposed architecture and training losses

3.2.1 DENOISING AUTO-ENCODING

The input sentence is reconstructed from its noisy version. The noisy output is obtained by dropping
and swapping words. Without this component the encoder/decoder quickly learns to merely copy
words. The figure below shows the process.

Figure 2: Illustration of proposed architecture and training losses

3.2.2 CROSS DOMAIN TRAINING

The input sentence is reconstructed from the noisy version of the translated sentence. This is done to
improve the mapping of the input sentence from the source language to target language.

3.2.3 ADVERSARIAL TRAINING

We constrain the model to encode both source language and target language sentences in the same
latent space. The discriminator has to classify between the encoding of source sentences and the
encoding of target sentences, whereas the encoder is trained to fool the discriminator.

3.3 GRAPH AUTOENCODER: POSSIBLE EXTENSION

To incorporate structure into the latent space in the form of a graph with connections between various
features, we use a graph autoencoder(figure below), which is a special case of message passing
networks. The graph autoencoder is inserted between the current encoder and decoder, and as a result
the latent space then consists of a learnt graph. The encoder followed by the graph layer encodes
source and target sentences to a structured latent space, and then decoder’s graph layer followed by
the decoder decodes them from the structured latent space to the source or the target domain.

The encoder’s graph layer takes the output of encoder as input nodes in its graph, denoted by
H

(0)
enc = z and outputs a structured vector H(n)

enc in the source language latent space, where n is the
number of layers of the GCN. The decoder’s graph layer takes H(n)

enc as input nodes in its graph,
denoted by H(0)

dec = H
(n)
enc and outputs a structured vector H(n)

dec = g in the target language latent
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Figure 3: Model Architecture with structured latent space using GCN

space. Our focus is to make the latent representations of sentences in both languages similar in the
latent space for the output of the GCN encoder.

The total loss function obtained will share stark similarity to the loss described for model in Lample
et al. (2017), with a difference that the losses of the GCN layers will be incorporated in the losses
associated with the encoder/decoder layers. As the latent representations is now the output of the
GCN, the loss functions will now try to obtain an identical representation for a input sentence and
its translation in that latent space of GCN output. It is redundant to write fully in terms of the
additional GCN layers, as they are automatically computed using automatic differentiation routines
in computational frameworks such as TensorFlow and PyTorch.

4 EXPERIMENTS

4.1 DATASET

We have used the Newstest dataset (New) which contains 20 million monolingual sentences in English
and 26 million monolingual sentences in Catalan. We use a fraction of these datasets.

4.2 INITIALIZATION

Further, we need to initialize our model with a translation model to obtain cross-domain losses.
We use a pair of dictionaries constructed from aligned pre-trained word embeddings trained using
the MUSEConneau et al. (2017b) library. We use the embeddings from the MUSE library to keep
the training completely unsupervised. The unsupervised dictionaries contain 30k pairs which were
obtained from a nearest neighbor metric defined in the MUSE paper.

4.3 TRAINING

In the paper of Lample et al. (2017), around 38 million sentences were present in each monolingual
corpora. In comparison, we have trained 3 models with 32k(¡1%), 0.96 million (2.5%) and 1.28
million(6%) sentences with training times of 8 hours, 54 hours and 164 hours respectively on a single
GPU. We have trained the model taking the same set of hyperparameters specified in the paperLample
et al. (2017).

4.4 PARAMETERS

We used three layers of bidirectional LSTM with attention as encoder with RNN size of 300, three
layers of bidirectional LSTM as decoder and a discriminator with hidden layer size 1024. We used
Adam optimizer for training the model.

4.5 RESULTS

We report the BLEU scores for the model trained on 1.28 million sentences. We have implemented
only the word-by-word translation baseline from the paper. Even though the increase in BLEU scores
was not far off from those mentioned in the paper, upon manual inspection of the Catalan translations
to English using Google Translate, we observed that the model was far away from its optima. The
model had learned the structure of the language and could frame grammatically correct sentences but
semantically the translations were very different from the input sentences. We attribute this problem
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to the tiny training corpora, small number of epochs and poor quality of the bilingual dictionary
synthesized by MUSE. There were certain methods for improving the translation quality, like using
ground-truth dictionaries or adding parallel sentences during training, but these deviate from the
baseline of ’completely’ unsupervised machine translation which we wish to demonstrate.

Table 1: BLEU score on the News 2014 datasets consisting of 3000 sentences

BLEU Scores English→Catalan→English English→Catalan
word-by-word 41.6 9.6
Model after 5k batches processed 15.2 10.8
Model after 33k batches processed 16.1 14.4
Model after 136k batches processed 16.5 18.1
Model after 148k batches processed 16.7 17.7
Model after 174k batches processed 17.9 19.0

5 DISCUSSION

The model proposed differs from the model described in Lample et al. (2017) in terms of the encoder
and decoder structure. The loss functions change accordingly to include the form of the GCN loss,
and we hypothesize that using a GCN layer will greatly optimize our learned representation in the
latent space. It is, however, worth noting that the added complexity may render the training more
unstable and chaotic, and the model may fail to converge to a well-enough parameter configuration
that correctly utilizes the advantageous properties that GCNs offer. As shown in Bastings et al. (2017),
syntactic structure in the form of relations between different words in a sentence greatly increases the
modeling power and unsupervised learning capacity of the network.

Intuitively, adding structure in unsupervised setting should increase accuracy than that of supervised
settings since any additional information is more valuable when existing information is scarce. Our
model may slightly differ from the former in that it automatically provides the GCN layer the desired
graph structure through transformations by previous layers in the encoder, instead of imposing a
pre-defined linguistic structure-like syntax. Whether or not this is a viable approach to utilize GCNs,
and whether the GCN input must be constrained to some structure, remains to be tested.

A recurring theme in neural machine translation is the large amount of resources in terms of time and
computing power it takes for the model to converge meaningfully. The dataset we are planning to
train and test the model on may be too small for sufficient convergence of the model, as the paper we
derive much of our model from clearly states that they used a dataset an order of magnitude larger
than ours. It is thus imperative that we attempt to train the model such that all losses are sufficiently
decreasing in tandem. Due to the use of multiple interconnected losses, which also include adversarial
losses, this is a daunting task, and a challenging engineering problem.

As we were unable to find a substantial parallel English-Catalan sentence corpora, we have assumed
the Google Translate translations as the ground truth. This is a very big assumption since Google
Translate is a translation model.

Due to the long training times we cannot present the results of training the model with GCN
layer.Reducing training time is imperative if we want to perform realistic evaluations on this model.
The addition of the GCN layer should add more structure to the latent space representation but there
remain many critical design decisions for GCN layer like the number of nodes, adjacency matrix
and transformation of LSTM output to GCN nodes, asymmetry in the GCN structure for source and
target languages, which would require months to tune if we go by the current training times. Also, the
improvements due to addition of the GCN layer over the baseline might not be obvious if the models
haven’t converged. Future work should first focus on speeding up the training time. Effect of addition
of parallel data in form of both sentences and dictionaries needs to be investigated. Effect of GCN
layer addition may well be observed if the training times are reasonable for this semi-supervised
setting. The one deficit which this paper has is the lack of structure in language modeling. GCN is
one such method to add structure. Exploring other architectures which can add a specific structure to
the model might improve the translation quality.
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