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Abstract

The aim of the project is to study two of the most
widely used machine learning strategies, namely K-
Nearest Neighbours algorithm and Perceptron Learning
algorithm, in a quantum setting, and study the speed-
ups that the quantum modules allow over the classical
counterparts. The study is primarily based on the fol-
lowing 3 papers:

1. Quantum Perceptron Models, by N. Wiebe, A.
Kapoor and K. M. Svore.

2. Quantum Algorithm for K-Nearest Neighbors
Classification Based on the Metric of Hamming
Distance, by Y. Ruan, X. Xue, H. Liu, J. Tan,
and X. Li.

3. Quantum Algorithms for Nearest-Neighbor Meth-
ods for Supervised and Unsupervised Learning, by
N. Wiebe, A. Kapoor and K. M. Svore.

Keywords – Quantum Machine Learning, Perceptron,
Nearest Neighbours, Hamming Distance, Inner Product
via Swap test

Introduction

Motivation Machine Learning is one of the fastest
developing fields in computer science in today’s time.
Problems in machine learning frequently require ma-
nipulation of large number of high dimensional vec-
tors. Quantum Computers are pretty good at handling
multiple large dimensional vectors simultaneously, be-
cause of the inherent superposition property of quantum
systems. This allows to ”seemingly” operate on large
number of vectors (implemented as the superposition
state) simultaneously. Although, it must be noted that
only one of these vectors can be seen in output, and
all other ”computation” done cannot be used, as the
state will in principle be lost on measurement. So, we
need cleaver techniques to utilize this property of quan-
tum systems to get a better implementation of machine
learning techniques than in classical case.

The project This project demonstrates how certain
classical machine learning algorithms can be imple-
mented faster on a quantum computer using its special
properties, making only slight modifications. Specifi-
cally, two machine learning techniques have been stud-
ied:

1. The K-Nearest Neighbours Learning Algorithm
(using various similarity metrics)

2. The Perceptron Learning Model

The rest of the report will sequentially describe these
techniques.

Quantum Nearest Neighbor Learning
Classification algorithms

What is meant by nearest neighbor learning? To
speak plainly, nearest neighbor learning aims to classify
a given new data point i.e. test vector into one of the
predetermined classes. To do this, we compare the
similarity of the test vector with all the training data
points, and we assign to the test sample the class of
the most similar training data point.
More formally, we are given a set of N training examples
{x1,x2, · · · ,xN} ∈ RD, with each of them belonging
to a class {y1, y2, · · · , yN}, out of a total of l classes
such that yi ∈ {1, 2, · · · , l},∀i ∈ [N ]. Now, given a
test vector {v0} ∈ RD, we use some similarity metric
S to find the most similar vector to v0. Say vm be the
vector such that S(vm,v0) ≥ S(vi,v0), ∀i ∈ [N ], then
we assign to v0 the class ym.

NN algorithms prove to be very accurate if they are
given a big enough amount of training data. But, this
accuracy comes at a computation cost of O(N), which
is very high is big data scenarios where NN techniques
are generally very accurate. Using quantum superpo-
sition property, and some fast quantum modules for
search and minimum finding, we can perform this es-
timation in O(

√
N logN), as done by Weibe et al (1)

and can even be made independent of the number of
training data points, as shown by Ruan et al (2).
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These two bounds are achieved by taking two widely dif-
ferent similarity metrics. The former uses inner product
value between vectors as the similarity metric, whereas
the latter utilizes the Hamming Distance between two
bit-strings to produce the desired output.Thus, clearly
depending on the choice of the metric S, we can have
different variants of Quantum-KNN, with varying accu-
racies, and complexities.

Amplitude Estimation
Given a state |Ψ〉 + |Ψ1〉 + |Ψ2〉, where |Ψ1〉 is the
superposition of all the ”good” states that satisfy any
required property, and |Ψ2〉 is the superposition of all
the ”bad” states that do not satisfy that property.
Amplitude Estimation is the problem of determining
a = 〈Ψ1,Ψ1〉, i.e. the probability that |Ψ〉 yields a
”good” state on measurement.(3)

Theorem 1. (Amplitude Estimation) For any positive
integers k and L, the amplitude estimation algorithm
outputs ã(0 ≤ ã ≤ 1) such that

|ã− a|≤ 2πk
√
a(1− a)
L

+
(
πk

L

)2

with probabilty ≥ 8/π2 when k = 1 and with probability
≥ 1−1/(2(k−1)) for k ≥ 2. It uses exactly L iterations
of the Grover’s algorithm in the procedure.

So, amplitude estimation allows us to estimate the
amplitude squared of a marked component of a
state.

Complexity If we try to determine the amplitude of
the component via statistical sampling, then we require
O( 1

γ2 ) queries to determine the result with a error tol-
erance of γ. Amplitude Estimation reduces the scaling
with γ to O(1/γ), providing quadratic speed-up.

Durr-Hoyer Minimum Finding Algorithm
Consider the problem where we are given an unsorted
list L of N elements. Each of these elements is an ele-
ment from a known ordered set S. We need to find the
element in the L which is the minimum in the S order-
ing. Clearly, this task cannot be accomplished classi-
cally in less than O(N) steps, as we definitely will have
to look at all the elements once before concluding the
minimum.

However, Durr and Hoyer presented a simple quantum
algorithm (4) which can do the aforementioned task in
just O(

√
N) queries to the oracle of L.

The Algorithm The exact algorithm for task goes as
follows:

Uniformly randomly choose an index
y ∈ {0, 1, · · · , N − 1};

while Running Time ≤ 22.5
√
N + 1.4 lg2N do

Initialize state as
N∑
i=1

1√
N
|j〉 |y〉

Mark every item i for which L[i] < L[y];
Search for a marked state using quantum

exponential searching;
Measure the first register, say outcome is z ;
if L[z] < L[y] then

y ← z;
end

end
Output y

Algorithm 1: Quantum Minimum Finding(4)

Theorem 2. The expected number of Grover’s itera-
tions required to get the minimum element in a given
set {y1, y2, · · · , yN} is bounded by

45
2
√
N

Now, having mentioned the required quantum modules,
we now proceed on to mention the KNN algorithm using
inner product value between vectors as the similarity
metric.

NN using Inner Product

Problem Setup
We have a set of N training vectors {v1,v2, · · · ,vN}.
The test vector, which is to be classified, is taken to be
v0. All of the training vectors as well as the test vectors
are d-sparse, which means ∀j ∈ {0, 1, · · · , N},vj has
atmost d non-zero entries. Let vji = rjie

iφji denote
the i-th element of the vj vector, and f(j, l) be the
location of the l-th non-zero entry in vj . We have the
following quantum oracles provided to us:

O : |j〉 |i〉 |0〉 → |j〉 |i〉 |vji〉

F : |j〉 |l〉 → |j〉 |f(j, l)〉
Also, it is known that ∀j, i, vji ≤ rmax
Lemma 3. The state |Ψj〉 as

1√
d
|j〉

d∑
i =1
|f(j, i)〉


√√√√1−

r2
jf(j,i)

r2
j max

e−iφjf(j,i) |0〉

+
rjf(j,i)
rj max

eiφjf(j,i) |1〉


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can be prepared using 3 oracle calls to O and F .

Proof. The procedure is as follows:

1. Start with the state |j〉 |0〉 |0〉 |0〉.

2. Apply Hadamard (H⊗[log d]) on second register to
obtain 1√

d

∑d
i=1 |j〉 |i〉 |0〉 |0〉.

3. Apply oracle F to obtain
1√
d

∑d
i=1 |j〉 |f(j, i)〉 |0〉 |0〉.

4. Query from O to obtain
1√
d

∑d
i=1 |j〉 |f(j, i)〉

∣∣∣vjf(j,i)
〉
|0〉.

5. Apply Ry(2sin−1(rjf(j,i)/rj max)) on the last
qubit to obtain

1√
d

d∑
i =1
|j〉 |f(j, i)〉

∣∣∣vjf(j,i)
〉

√√√√1−
r2
jf(j,i)

r2
j max

|0〉

+
rjf(j,i)
rj max

|1〉


6. Apply Rz(2φjf(j,i)) to the last qubit, followed by
O† for cleaning the ancilla register, to obtain the
required state.

Clearly, only 3 queries to O and F were enough to pre-
pare the state.

How to get to inner product? To get the inner prod-
uct of v0 and vj , prepare the states |Ψ0〉 and |Ψj〉, as
shown in Lemma 4. Then, add an ancilla register |1〉 in
both states, but at different locations to get the follow-
ing two states:

|ψj〉=
1√
d
|j〉

d∑
i=1
|f(j, i)〉


√√√√1−

r2
jf(j,i)

r2
j max

e−iφjf(j,i) |0〉

+
rjf(j,i)
rj max

eiφjf(j,i) |1〉


and

|φ〉 = 1√
d

d∑
i=1
|f(0, i)〉 |1〉


√√√√1−

r2
0f(0,i)

r2
0 max

e−iφ0f(0,i) |0〉

+
r0f(0,i)
r0 max

eiφ0f(0,i) |1〉


Adding these extra |1〉 qubits helped us get rid of the
unwanted terms from he amplitde of |0〉 in the inner

product of the states. So, the inner product between
|ψj〉 and |φ〉 comes out to be:

〈ψj , φ〉 = 1
d

∑
i

vjiv
∗
0i

rj maxr0 max
= 〈v0,vj〉
drj maxr0 max

So, we need to get the value of 〈ψj , φ〉 which will en-
able us to get the inner product between the vectors as
well.

Swap test
Lemma 4. There exists a quantum SWAP gate F that
swaps two given qubits.

Proof. The circuit in Figure 1 implements the SWAP
gate.
|ψ〉 |φ〉 → |ψ〉 |φ⊕ ψ〉 → |ψ ⊕ φ⊕ ψ〉 |φ⊕ ψ〉 =
|φ〉 |φ⊕ ψ〉 → |φ〉 |φ⊕ ψ ⊕ φ〉 = |φ〉 |ψ〉

1

Figure 1: SWAP Gate

Theorem 5. (SWAP Test) Using the SWAP gate, we
can have a efficient quantum circuit that can allow us
to estimate the inner product of the two input vectors.

Proof. Follow the steps given below:

1. Start with the state |0〉 |ψ〉 (|ψ〉 = |x〉 |y〉)

2. Apply Hadamard on the first qubit to obtain
1√
2(|0〉+ |1〉) |ψ〉.

3. Apply controlled SWAP gate to obtain
1√
2 (|0〉 |ψ〉+ |1〉F (|ψ〉))

4. Apply Hadamard on the first qubit again to obtain

|ϑ〉 =
(
I + F

2

)
|0〉 |ψ〉+

(
I − F

2

)
|1〉 |ψ〉

= P0 |0〉 |ψ〉+ P1 |1〉 |ψ〉

Here, P0 and P1 form a projection as P0 +P1 = I
and P0 · P1 = 0.

1https://www.researchgate.net/figure/263776912˙fig2˙The-
swap-gate-cascades-three-quantum-Controlled-Not-gates
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Therefore,

Pr(0) = 〈ψ|P0|ψ〉 = 1
2 〈xy, xy + yx〉

= 1
2
(
1 + (〈x, y〉)2

)
So,

|〈x, y〉 |2= (2P (0)− 1)

So, in out KNN algorithm, perform SWAP test on
|ψj〉 and |φ〉 to obtain the state |ϑj〉, such that the
probability of measuring the first qubit of |ϑj〉 to be
0 will allow us to get the inner product between vj
and v0. We can use statistical sampling to get this
probability, but due to reasons already mentioned
earlier, we will use amplitude estimation instead.

Getting the P (0) from amplitude estimation, we get
the inner product between vj and v0 for any j ∈ [N ].
Now, to get the maximum inner product, we can either
do a linear check over all possible values of j as done in
the classical case, which would require O(N) time. But
using the Durr-Hoyer algorithm for finding minimum(or
maximum, in our case), we can get the maximum value
of the inner product in just O(

√
N) queries.

Note Amplitude Estimation is a irreversible process,
as it involves a measurement of the final state. So, to
be able to use the Durr-Hoyer algorithm, we need to
perform amplitude estimation in a reversible manner.
The reversible version of the AE algorithm is know as
coherent amplitude estimation.

Coherent Amplitude Estimation
Normal amplitude estimation outputs the state√
a |y〉 +

√
1− |a|

∣∣∣y⊥〉, where |y〉 is a bit-string that
encodes the desired amplitude.
Let A be the unitary operator that produces the state√
a |y〉 +

√
1− |a|

∣∣∣y⊥〉 from the state
∣∣∣0⊗nk〉, for

1/2 ≤ |a0|≤ |a|≤ 1.

Lemma 6. (Hoeffding’s Inequality)2

For a Bernoulli’s Disrtibution:

P(H(n) ≤ (p− ε)n) ≤ exp(−2ε2n)

Theorem 7. Given A, ∃ a algorithm such that for every
∆ > 0, ∃k so that we can find a state |ξ〉 such that∣∣∣∣∣∣∣∣ |ξ〉 − ∣∣∣0⊗nk〉 |y〉 ∣∣∣∣∣∣∣∣

2
≤
√

2∆.
2https://en.wikipedia.org/wiki/Hoeffding%27s˙inequality

Proof. Consider a unitary M that can find the median
of k states, as follows:

M : |y1〉 · · · |yk〉 |0〉 → |y1〉 · · · |yk〉 |ỹ〉

This can be implemented by simply sorting the k
states, and getting the middle element in O(kn log k)
operations.

The algorithm goes as follows:

1. Prepare the start state
(√

a |y〉+
√

1− |a|
∣∣∣y⊥〉)⊗k

(Independently prepare k copies through A).
We can partition this state as:(√

a |y〉+
√

1− |a|
∣∣∣y⊥〉)⊗k = A |Ψ〉+

√
1− |A|2 |Φ〉

where |Ψ〉 is the uniform superposition over
states with median = y, and |Φ〉, is the uniform
superposition over states with median not equal
to y.

2. Apply M to measure the median.

M
(√

a |y〉+
√

1− |a|
∣∣∣y⊥〉)⊗k |0〉

=A |Ψ〉 |y〉+
√

1− |A|2 |Φ〉
∣∣∣y⊥〉

3. Apply A†⊗k to the first register to obtain:
|ξ〉 = A†⊗k

(
A |Ψ〉 |y〉+

√
1− |A|2 |Φ〉

∣∣∣y⊥〉)
= A†⊗k

(
A |Ψ〉 |y〉+

√
1− |A|2 |Φ〉 |y〉

)
+A†⊗k

(√
1− |A|2 |Φ〉 |y〉 − |Ψ〉 |y〉

)
=
∣∣∣0⊗nk〉 |y〉+A†⊗k

(√
1− |A|2 |Φ〉 |y〉 − |Ψ〉 |y〉

)

Observe: ∣∣∣∣ |ξ〉 − ∣∣∣0⊗nk〉 |y〉 ∣∣∣∣ ≤ √2(1− |A|2)

So, we need P(y⊥) = 1− |A|2≤ ∆.

Claim 8. P(y⊥) ≤ ∆ if k ≤ ln( 1
∆)

2(|a0|− 1
2)2

Proof. In any sequence of measurements that contain
more than k/2 y-outcomes, the median must be y.

P(y⊥)≤P(no more than k/2 y-outcomes)

=
k/2∑
i=0

(
k
p

)
|a|p|1− |a||k−p

Also, we know that |a|> |a0|> 1/2. Thus,

P(y⊥) ≤ exp
(
−2k

(
|a0|−

1
2

)2
)
≤ ∆
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=⇒ k ≤
ln
(

1
∆

)
2
(
|a0|−1

2

)2

So, for appropriate values of k, we have the relation
P(y⊥) ≤ ∆ =⇒

∣∣∣∣ |ξ〉 − ∣∣∣0⊗nk〉 |y〉 ∣∣∣∣ ≤ √2∆.

Theorem 8 proves that coherent majority voting can be
used to remove the measurements used in algorithms
such as amplitude estimation at the price of introducing
a small amount of error in the resultant state.

Lemma 9. If A requires Q queries to the oracles, then
|ξ〉 can be prepared by number of queries bounded above
by 2Q

(
ln( 1

∆)
2(|a0|− 1

2)2

)
.

Proof. We apply amplitude estimation k times, and
each of those requires Q queries, totaling to Qk queries.
Also, we apply A†⊗k which would require Qk further
queries. So, total number of queries = 2Qk.

Theorem 10. (1)
The final task of obtaining maxj∈[N ]|〈vj , v0〉 |2 within
error ε can be done with success probability 1 − δ0 re-
quiring an expected number of queries bounded above
by

1080
√
N

⌈
4π(π + 1)d2r2

max

ε

⌉
ln
(

81N(ln(N)+γ)
δ0

)
2(8/π2 − 0.5)2


where γ ≈ 0.5772 is Euler’s constant.

KNN using Hamming Distance

What is Hamming Distance? Hamming Distance be-
tween two n-bit-strings A and B is defined as number
of positions at which the strings A and B differ at the
corresponding bits. Note that A and B must be of the
same length for Hamming distance between them to be
defined.

Why? As Ruan et al state(2): ”Mapping a natural vec-
tor to a bit vector by well-defined hash functions, simple
KNN classifiers in Hamming space are competitive with
sophisticated discriminative classifiers, including SVMs
and neural networks.” We will see that this method will
prove to be much faster for larger data, and are compet-
itive with some of the more complicated and established
classifiers.

Problem Setup
We are provided with feature vectors |vp〉 , p ∈ 1, · · · , N
and their corresponding classes cp ∈ {1, · · · , l}. If the
feature vectors are not provided as bit-vectors, then we
will have to use some hashing function such as linear
mapping, or kernelized mapping, neural network based
mapping or any other mapping to convert them into
bit vectors. Henceforth, all vj ’s have been taken to be
bit vectors.
The testing example |x1, · · · , xn〉 has been provided to
be classified.
We are also provided with a Hamming Distance
threshold t.
Our aim is to find all those training datapoints, whose
Hamming Distance from the test sample is ≤ t.

Quantum Circuit for a + 1 (2)

Figure 2: Quantum Circuit for a+ 1

Construct the training superposition

|T 〉 = 1√
N

N∑
p=1
|vp1 , · · · , v

p
n, c

p〉

Algorithm
1. Prepare the state

|φ1〉 = 1√
N

N∑
p=1
|x1, · · · , xn; vp1 , · · · , vpn, cp; 0〉

2. Record the difference between training and test
vector, and store the result reversed in first regis-
ter.

|φ2〉 =
∏
k

X(xk)CNOT (xk, vpk) |φ1〉

= 1√
N

N∑
p=1
|d1, · · · , dn; vp1 , · · · , vpn, cp; 0〉

(CNOT(a,b) overwrites a with 0 if a = b, else 1.)
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Now, Hamming distance between |x〉 and
|vp〉 = n−

∑n
i=1 d

p
i .

=⇒ n−
n∑
i=1

dpi ≤ t for all ”good” training examples.

Suppose 2k−1 ≤ n ≤ 2k, then define m = 2k−n.

=⇒
n∑
i=1

dpi +m+ t ≥ 2k

So, set initial a = m + t. Then the condition
HD ≤ t can be determined by whether the addi-
tion of

∑n
i=1 d

p
i + a overflows or not.

We can implement a + di as controlled a + 1,
which only adds 1 to a if di = 1.
We get a+

∑n
i=1 di using repeated controlled a+1

gates. Picking the most significant dlog te bits
from that, we can say that if any of them is 1,
then the value computed is greater than 2k and
hence that training sample is a ”good” sample.
So, we simply apply an OR gate the these qubits,
to get the output as CONDp. The quantum OR
gate is shown in Figure 3, and the final circuit for
computing CONDp has been shown in Figure 4.

Figure 3: Quantum OR gate

Figure 4: Quantum Circuit for generating CONDp

3. Define
Ω = {p| Hamming˙distance(|x〉 , |vp〉) < t}

Then, let U be the unitary such that

|φ3〉 = U |φ2〉

= 1√
N

(∑
p∈Ω
|d1, · · · , dn; vp1 , · · · , vpn, cp; 1〉

+
∑
p/∈Ω
|d1, · · · , dn; vp1 , · · · , vpn, cp; 0〉

)

4. Define Γ = I⊗ |1〉 〈1|. Obtain:

|φ4〉 = Γ |φ3〉 = α
∑
p∈Ω
|d1, · · · , dn; vp1 , · · · , vpn, cp; 1〉

such that
∑|Ω|2
i=1 |α|2= 1

α is the renormalized amplitude of each compo-
nent of φ4.

5. |φ4〉 is composed of |vp〉 whose distance are no
more than t to the testing sample. Measure cp
alone to get the category of the test sample |x〉.

Performance Analysis
The cost of this circuit is measured by the number of
elementary gates { NOT, CNOT, Toffoli } required.
Constructing the training vector T takes O(N) time,
but this step is a preliminary step that needs to be done
only once before the start of the algorithm as it will not
change during the algorithm, and can be used for all
subsequent runs of the algorithm without the need to
create it again.
Among the main algorithm steps, first we have the a+1
gate.

Cost of a+ 1 gate =


1 if k = 1
10 if k = 2
2k2 + k − 5 if k ≥ 3

The total circuit to compute CONDp contains this gate
n times. Additionally, it also contains dlog te − 1 NOT
gates and dlog te+ 1 Toffoli gates. Hence,

total cost = n·(2n2+n−5)+(dlog te+1)+(dlog te−1)

=⇒ the total cost of this algorithm is O(n3).

Note The complexity of this algorithm is independent
of the number of training examples. This is because
we work with a uniform superposition of all training ex-
amples, thus eliminating the need of repeated compu-
tation. Hence, in the case of big data scenarios, Ham-
ming Distance method of nearest neighbor classification
outperforms all other nearest neighbor methods. Also,
the classification accuracy of the Hamming Distance
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method is better than the one achieved by the other
methods, as seen from Figure 5.(2)

Figure 5: Hamming Distance QKNN vs other NN
methods

Quantum Perceptron Models

What is Perceptron Learning We are provided with
a set of N training examples {x1,x2, · · · ,xN} ∈ RD,
with each of them having a label {y1, y2, · · · , yN}, such
that yi ∈ {+1,−1}, ∀i ∈ [N ]. The perceptron model
to be constructed is just a hyperplane in the space, to
be parametrized as w ∈ RD such that the hyperplane
forms a perfect barrier between the two sets of labeled
data. Mathematically, we need to find such a w so that
yi ·wTxi > 0 for all i ∈ [N ].
Such a w is learned by initializing w to some random
vector, and then updating it suitably every time a train-
ing example is misclassified by the model. The update
rule that will be considered here is w← w + yx, where
(x, y) is the vector that has been misclassified.

Theorem 11. (Novikoff) (5)
Let x1, · · · ,xT ∈ RN be a sequence of T points with
||xt||≤ r, ∀t ∈ [1, · · · , T ], for some r > 0. Assume that
there exists ρ > 0 and v ∈ RN , v 6= 0, such that ∀t ∈
[1, T ], ρ ≤ yt(v·xt)

||v|| . Then, the number of updates made
by the Perceptron algorithm when processing x1, · · · , xT
is bounded by r2/ρ2.

Using Theorem 1, it is clear that if the training data is
separated by a margin of γ, then atmost O

(
1
γ2

)
up-

dates are need to be made on w.

Classical Complexity We cannot do better than pro-
cessing once at each training point in the classical case,
because all points are independent. So, the complexity
cannot be reduced beyond O(N) classically.

Note We will see that this complexity can be quadrat-
ically improved and brought down to O(

√
N) in the

quantum setting.

Grover’s Search
Consider the problem where we are required to find the
unique input to a blackbox function f(x) that produces
a particular output value. This cannot be done in better
than O(n) evaluations of f classically, where n is the
total number of possible inputs to f . This is because
in the worst case we will need to try out all the possible
inputs to f . On the other hand, the given task can be
accomplished in only O(

√
n) queries to oracle of f on

a quantum computer, using the novel Grover’s Search
algorithm(6).3

Important points regarding Grover’s Search

1. If the initial probability of getting a desired out-
come is sin2(θ), then this probability after j iter-
ations of Grover’s algorithm is sin2((2j + 1)θ).

2. If j drawn randomly from {0, ...,M − 1}, then if
M ≥ M0 := 1

sin(2θ) , then average probability is
atleast 1/4.

3. But if no lower bound known on θ, then we use
exponential searching.

4. For step i, M = ci, for some c ∈ (1, 2). After
logarithmic number of such steps, M ≥M0 with
high probability.

Problem Setup
The training examples are sampled uniformly from the
training set {v1, v2, · · · , vN}, with corresponding labels
being {y1, y2, · · · , yN}. Define vi = (vi, yi). This sam-
pling procedure is different from the classical percep-
tron learning where training examples are provided one
by one as input. In our case of quantum perceptron,
a training example may even be picked multiple times.
We can access the training examples by means of an
oracle U provided to us.

U |uj〉 |v0〉 = |uj〉 |vj〉

where |v0〉 is a blank register.

Let fw(vi, yi) be a function which is 1 if and only if the
perceptron w misclassifies the training vector vi. This
function is basically the quantum implementation of the

3Details of the Grover’s Search algorithm have been skipped
from the report as this algorithm was later discussed in the class
itself. So, only some main results regarding the same have been
reported.
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classification algorithm being used by the perceptron.
Define:

Fw |vj〉 = (−1)fw(vi,yi) |vj〉

Fw is easily implementable through a multiply con-
trolled phase gate. Now, define

Fw = U †(1⊗Fw)U

Now, we perform the Grover’s search algorithm taking
the Grover’s iterate as

Ugrover = (2 |s〉 〈s| − 1)Fw

where |s〉 = 1
N

∑N
i=1 |ui〉

Algorithm

for k = 1, ..., dlog3/4 εγ
2e do

for j = 1, ..., dlogc(1/sin(2sin−1(1/
√
N))e do

Draw m uniformly from {0, ..., dcje};
Prepare quantum state |Ψ〉 = |s〉Φ0;
Ψ = (Ugrover)mΨ;
Measure Ψ. Say, outcome = ua;
(v, y) = Uc(a);
if fw(v, y) = 1 then

Return w′ ← w + yv.;
end

end
end
Return w′;

Algorithm 2: Online Quantum perceptron training

Analysis
Lemma 12. Given the ability to uniformly sample from
training vectors, number of queries to fw classically re-
quired to find a misclassified vector, or to conclude per-
fect classification, with probablity 1 − εγ2, is atmost
O(N log(1/εγ2)).

Proof. Given that we draw k samples, probability that
all of them fail to detect a misclassification(if present)
is atmost (1− 1

N )k ≤ exp(−k/N).
If we want this error to be atmost δ, then

kmin = dN log(1/δ)e

So, if we draw Ndlog(1/εγ2)e samples, then:

• If there exists a mistake, then probablity that it
goes undetected is atmost εγ2, i.e. algorithm
finds a mistake with probability atleast 1− εγ2.

• If no mistake occurs, then algorithm concludes w
as the correct hyperplane, with probability atleast
1− εγ2.

Lemma 13. Assuming training vectors are unit vectors,
and are drawn from two classes separated by margin
of γ in feature space, the algorithm will either update
percptron weights, or conclude that the current w is a
separating hyperplane between the two classes, using
atmost O(

√
N log(1/εγ2)) queries to Fw, with proba-

bilty of failure atmost εγ2.

Proof. From Grover’s search algorithm, starting with
initial success probability sin2(θ), after m updates the
probability becomes sin2((2m + 1)θ). So, the in-
ner loop performs a perceptron update with probability
sin2((2m+ 1)θ), using m queries to Fw.

sin2(θ) ≥ 1/N =⇒ θ ≥ sin−1(
√

1/N) ∈ Ω(1/
√
N)

If misclassified vector exists, then the middle loop re-
peated at least logcM0 times, so final iteration has
m ≥ M0, and thus middle loop updates perceptron
weights with probability atleast 1/4. Given that a mis-
classification exists, the loop fails to find it with proba-
bility atmost 3/4.
Each iteration of the middle loop requires total num-
ber of queries atmost proporational to

∑dlogc M0e
i=1 dcie ≤

cdlogc M0e+1

c−1 + dlogcM0e ∈ O(M0). Now, we have

M0 = 1/sin(2θ) ≤
√
N

=⇒ O(
√
N) queries to Fw are required per inner loop

iteration.
If middle loop repeated k times, then probability of
failing to find that element all k times is at most(

3
4

)k
. So, to upper bound the error probability by δ:

kmin = dlog3/4 δe number of iterations of the inner loop
are required.
=⇒ So, total number of queries needed is
O(
√
N log3/4 δ) ∈ O(

√
N log(1/δ).

Hence, the lemma holds with δ = εγ2.

Theorem 14. (7) Given a training set separated by a
margin of γ in feature space, the number of queries
needed to infer a perceptron model w such that P(∃j :
fw(φj) = 1) ≤ ε using quantum computer is Nq such
that

Ω(
√
N) 3 Nq ∈ O

(√
N

γ2 log
( 1
εγ2

))
and using a classical computer is Nc such that

Ω(N) 3 Nc ∈ O
(
N

γ2 log
( 1
εγ2

))

Conclusion

Through means of this project, we have presented
quantum algorithms for perceptron learning, nearest
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neighbor learning through inner products and K-nearest
neighbor learning through Hamming Distance. All these
methods provide significant reductions in the query
complexity as compared to the corresponding classical
counterparts.
These algorithms surely are a step towards in world
where machine learning techniques blend completely
with the faster quantum modules. Future extensions
from this project are studies into Quantum Neural Net-
works and search for exponential speed-ups over the
classical cases.
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