
UGP - Report

Topic - Query-Focused Multi Document Abstractive
Summarisation

Advisor:
Prof. Arnab Bhattacharya, CSE, IIT Kanpur

Undertaken by:
Akshat Jindal - 150075 - akshatj@cse.iitk.ac.in
Amrit Singhal - 150092 - amrits@cse.iitk.ac.in

Abstract

We present a method to perform query-focused multi-document summarisation,
using abstractive techniques. Traditional information retrieval systems return a
ranked list of whole documents as the answer to a query. However, in many
cases, not every part of an entire document is relevant to the query. Thus, it is
desirable to retrieve from the set of retrieved documents, in a succinct manner, a
summary of only the required information extracted from across all the relevant
documents. The approach proposed involves retrieving relevant documents for
each query, followed by extracting relevant passages from each document. Finally,
an abstractive summarisation approach is used to generate abstractive summaries
for our information need from the extracted relevant passages of the documents.

1

Contents

1 Introduction 3

2 The Proposed Method 3

3 Document Level Retrieval 3

4 Relevant Passage Extraction 4

4.1 TextTiling . 4

4.2 Sentence Scoring Approaches . 4

4.2.1 TfIdf approach . 4

4.2.2 Luhn’s Clustering Approach . 4

4.2.3 LSA based approach . 5

5 Redundancy Removal And SuperDoc Creation 5

6 Abstractive Summary Generation 6

6.1 Seq-to-seq RNN . 6

6.1.1 Structure of the model . 6

6.1.2 Implementation and Results . 8

6.1.3 Problems . 8

6.2 Pointer Generator Networks . 8

6.2.1 Structure of the model . 8

6.2.2 Implementation and Results . 9

6.2.3 Problems . 9

6.3 Reinforcement Learning based techniques . 10

6.3.1 A conundrum . 10

6.3.2 Reinforcement Based Learning . 10

6.3.3 Self-Critical Policy Gradient . 10

6.3.4 Augmenting the Loss Function . 10

6.3.5 Intra-Temporal and Intra-Decoder Attention 11

6.3.6 Implementation and Results . 11

7 Issues with SuperDoc-based summarisation 11

8 Injecting Query Relevance in Abstractive Summarisation 11

9 The Updated Proposed Method 12

10 DataSet 12

11 Future Work 13

2

1 Introduction

Search-engines have now become increasingly popular, and have become the common entry-ways
for people into the world wide web. With the ever-increasing amount of information available on
the internet, and the excessively busy schedules of people, individuals do not have time to read the
complete document(s) that is retrieved for their query. What they need is a concise and precise
summarisation of the information available in that document. The relevance of this document to the
query is judged based on this summary only. Even a extremely relevant document may be marked
as irrelevant due to poor summary generated. This leads to the growing importance of document
summarisation in modern information retrieval systems.

Summarisation in general comes in two flavours, namely Extractive and Abstractive. Extractive
methods work by selecting a subset of existing words, phrases, or sentences in the original text to
form the summary. In contrast, abstractive methods build an internal semantic representation and
then use natural language generation techniques to create a summary that is closer to what a human
might express. Such a summary might include verbal innovations. Research to date has focused
primarily on extractive methods, which are appropriate for image collection summarization and video
summarization.

Traditional information retrieval systems return a ranked list of whole documents as the answer
to a query. However, in many cases, not every part of an entire document is relevant to the query.
Thus, it is desirable to retrieve only relevant passages, as opposed to whole documents, which in
effect helps to filter out irrelevant information in a long relevant document.This leads to two different
types of summarisation techniques to pursue: query-independent and query-dependent document
summarisation.

Query independent summarisation is an extensively researched field and great results have been ob-
tained for extractive summarisation in a query independent manner[10]. While results for abstractive
summarisation have also been satisfactory, it is an ongoing field of research, with the current state of
the art being RL based deep networks by Paulus et al[6].

However, query dependent summarisation requires extra work. We propose a method to get an
abstractive summary for a given query together from multiple documents together, without actually
having to process all of those documents together simultaneously, which is the conventional method
for multi-document abstractive summarisation, and is computationally more expensive. Our method
serves to keep the benefits of abstractive summarsation over multiple documents, while actually doing
the task over substantially lesser data.

2 The Proposed Method

We propose a pipeline to achieve query-focused multi-document abstractive summarisation. The
basic steps included are as follows:

1. Retrieve relevant documents for the given query from the entire corpus of documents.

2. Extract relevant passages from each document.

3. Collate all such relevant passages and perform redundancy removal to keep the length of
such a collated document reasonable

4. Abstractive summarisation approach is used to generate abstractive summaries for our
information need.

This following sections describes each step in the proposed pipeline in detail.

3 Document Level Retrieval

The first step is to perform a standard retrieval process to get the set of relevant documents for each
query. This step was performed using Pylucene’s Information Retrieval platform.

3

4 Relevant Passage Extraction

The next step is to extract from each relevant document, passages that contain information relevant to
the query. A critical problem in passage retrieval is to extract coherent relevant passages accurately
from a document, which we refer to as passage extraction. While much work has been done on
passage retrieval, the passage extraction problem has not been seriously studied. Most existing
work tends to rely on pre-segmenting documents into fixed-length passages which are unlikely
optimal because the length of a relevant passage is presumably highly sensitive to both the query and
document. In this paper, we first explore a few segmenting based approaches and then introduce a
new LSA based approach for passage extraction.

4.1 TextTiling

TextTiling[3] is a technique for subdividing texts into multi-paragraph units that represent passages,
or subtopics. In principle, paragraphs should be coherent, self-contained units, complete with topic
sentence and summary sentence. In practice, however, paragraph markings are not always used to
indicate a change in discussion, but instead can sometimes be invoked just to break up the physical
appearance of the text in order to aid reading. TextTiling is used to partition each document, in
advance, into a set of multi-paragraph sub-topical segments.
TextTiling makes use of patterns of lexical co-occurrence and distribution. The algorithm has three
parts: tokenization into terms and sentence-sized units, determination of a score for each sentence-
sized unit, and detection of the subtopic boundaries, which are assumed to occur at the largest valleys
in the graph that results from plotting sentence-units against scores. Each "passage" extracted thus is
a coherent, and self-contained sub-document in a way, complete with a topic for itself. We will make
use of this primary observation.
The authors for TextTiling used three different scoring strategies, based on blocks, vocabulary
introductions, and chains. Also, we ran these against the default NLTK TextTiling to get a comparative
result. Finally, the vocabulary introduction based scoring was included in the pipeline.
Now that we have chunked each document into sub-topical coherent passages, we perform a secondary
retrieval, on the same query, keeping these passages as our documents. Thus, we are able to get the
most relevant passages from the entire corpus.

4.2 Sentence Scoring Approaches

Three sentence scoring approaches were tried. In each approach, every sentence in the document is
given a score depending on the specific algorithm.Then, a few top sentences are picked. For each
picked sentence, three sentences above and below it are taken as constituting the passage this sentence
is a part of. These passages constitute the relevant passages to be extracted from the document. We
now describe the various scoring techniques used.

4.2.1 TfIdf approach

In this approach, considering the document as the corpus and each sentences as a document in the
corpus, the standard TF-IDF score is calculated for each sentence

TFIDF (sen, q) =
∑

t∈sen and q

TF (t) ∗ IDF (t)

4.2.2 Luhn’s Clustering Approach

According to [9], two issues should be considered for a query-biased summarization: relevance and
fidelity. The former shows the relevance of the summary with the query, while the latter indicates the
correspondence of the summary with the original document. A good summary should keep both high
relevance and high fidelity.

• RELEVANCE: Based on the belief that the larger the number of query terms in a sentence,
the more likely that sentence conveys a significant amount of the information need expressed
in the query, we used the following formula to calculate the score for a sentence

Scorerel(sen) = RET ∗ n2/q

4

where n is the number of query terms in sentence sen, q is the total number of query terms
and RET is a measure of the how important is the Relevance score as compared to the
Fidelity score. A value of RET=2 has been used in this paper.

• FIDELITY: Based on the assumptions that high frequent non-stop words are significant and
sentences with dense cluster of significant” words are important, Luhn[courses.ischool.
berkeley.edu/i256/f06/papers/luhn58.pdf] proposed a keyword-based clustering
method to measure the importance of sentences. More specifically, a word is deemed as
“significant” if it is not a stop word and its term frequency is larger than a threshold T
(T=2 in this paper).Clusters of significant words are created such that significant words
are separated by not more than 4 insignificant words within the sentence. If in that way a
sentence contains two or more clusters, the one with the highest significance factors is taken
as the measure of that sentence. The significance score for a cluster :

Scorefid(sen) = SW 2/TW

where SW is the number of significant words in the cluster (both cluster boundaries are
significant words), and TW is total number of words in the cluster.

The final score of a sentence is just a sum of the two scores

4.2.3 LSA based approach

The traditional approach to using LSA for document summarisation is not query biased and no query
biased LSA approach has been talked about as far as the authors have researched.

In their paper, Steinberger and Jezek[8] applied the singular value decomposition (SVD) to generic
text summarization. The process starts with creation of a term by sentences matrix A, upon which
SVD is applied to obtain U,S,V matrices. To reduce the dimensionality of the output document
vectors(rows of V), only the first K columns of U and V are taken and only the first K rows and
columns of S are taken.

The optimum value of K was set such that the singular values do not fall below half the value of the
highest singular value. The authors propose the intuition that each of the K dimensions represents
a topic and the singular values corresponding to each topic are a measure of the importance of that
topic in the document overall. Using this intuition we propose that each sentence will be given two
scores, namely LSA score and Relevance score.

• The LSA score : Instead of simply calculating the norm of every k-lengthed sentence vector
as done in [8], we take the weighted norm with the weights being supplied by the query
k-lengthed vector.This works because higher the weight, i.e the value of the query vector for
some topic k, greater focus is given to that topic while choosing sentences.

• Relevance score : We also add a relevance score for each sentence which is nothing but the
cosine similarity of the sentence and query vector.

The final score for a sentence is a weighted sum of the above two scores.

5 Redundancy Removal And SuperDoc Creation

The next step is to create, what we call a SuperDoc, that should contain all the information required
to answer the query, and no(or not much) irrelevant information. We now have all the relevant
passages from all the different documents available in the corpus. These passages do satisfy the
information constraint we have on out SuperDoc, but multiple passages may still contain the same
information about the topic, as there may be similar information available in different documents, or
in different sections of the same document, in both of which cases we will get separate semantically
similar passages for the query purpose. This will introduce redundancy in the SuperDoc that we aim
to create, which is ultimately undesirable in the summary.
So, rather than simply concatenating these passages one after another, we apply a redundancy
removal technique first to avoid repetitive information from entering the SuperDoc. The redundancy
removal technique we have chosen is based on simple cosine similarity measure, that provides good
enough results for our task. There exists some other more involved methods for the task, but the

5

courses.ischool.berkeley.edu/i256/f06/papers/luhn58.pdf
courses.ischool.berkeley.edu/i256/f06/papers/luhn58.pdf

results from the simple cosine similarity measure are not so far from them.
Based on the method used for passage extraction, we may or may not have a ranking among passages.
From now on, we assume that we are picking the passages in the ranked order, from most relevant to
least relevant, if we have a ranking (if we used TextTiling approach), or else, we pick passages in the
order that they were available in the document, going from the most relevant to the least relevant
document.

Algorithm:

1. Construct a vector representation for every sentence in every passage. We have used
term-frequency based feature vectors, after removing stopwords.

2. For each passage, picking passages in the above mentioned order:

• For each sentence in the passage:
– Check the cosine similarity of that sentence, with every sentence that is already

added to the SuperDoc
– If this comes out to be greater than a threshold, then exclude that sentence from the

SuperDoc, else concatenate that sentence to the SuperDoc.

At the end of this algorithm, we will get a SuperDoc that will contain sentences, none of which
contain the same information. Surely, there may still be some redundancy of information at the
passage level, which will require other advanced redundancy removal techniques which can be added
here. We use this SuperDoc for our final step of abstractive summarisation.

6 Abstractive Summary Generation

Now, the last step in our proposed pipeline is to generate an abstractive summary of the extracted rele-
vant passages. The first method we apply for the same is to perform a direct abstrative summarisation
of the SuperDoc created above. We employ multiple existing methods of abstractive summarisation
after performing a extensive literature review of the same, which will go through in the rest of this
section.

6.1 Seq-to-seq RNN

6.1.1 Structure of the model

Idea The basic idea behind abstractive summarisation is to map an input sequence of words to an
output sequence of words. This basic structure is common across various NLP tasks like Machine
Translation. A common deep learning architecture used in such scenarios is the attentional Recurrent
Neural Network (RNN) encoder-decoder model proposed in Bahdanau et al[1].The encoder consists
of a bidirectional GRU-RNN (Chung et al., 2014), while the decoder consists of a uni-directional
GRU-RNN with the same hidden-state size as that of the encoder, and an attention mechanism over
the source-hidden states and a soft-max layer over target vocabulary to generate words.

Architecture The tokens of the article wi are fed one-by-one into the encoder (a single-layer
bidirectional LSTM), producing a sequence of encoder hidden states hi. On each step t, the decoder
(a single-layer unidirectional LSTM) receives the word embedding of the previous word (while
training, this is the previous word of the reference summary; at test time it is the previous word
emitted by the decoder), and has decoder state zt. The attention distribution αt is calculated as in
Bahdanau et al[1].

The decoder basically outputs the summary, one word at a time. At each time step t, it calculates the
hidden state zt as :

zt = f(zt−1, ct, yt−1)

where the function f is some non-linear function, and ct is the context vector at time step t where :

6

Figure 1: Decoder with attention architecture

Figure 2: Bi-directional RNN encoder

eit = a(zt, hi)OR

eit = vT tanh(Wzzt +Whhi + bias)

αit = softmax(eit)

ct =
∑
i

αit ∗ hi

a is a FNN model whose weights are also learnt along with the other parameters of our model. We
have also mentioned the exact form used in the paper for completeness.

Realise that the attention distribution can be viewed as a probability distribution over the source
words, that tells the decoder where to look to produce the next word. Then, zt is the passed through a
linear layer and then transformed to softmax probabilities via :

Pvocab(w) = softmax(V ∗ zt)
which gives us the probability distribution over the Vocabulary from which the words are sampled by
the decoder for summary generation.

Loss and Training The loss function used is the negative log-likelihood of the target word at each
time step :

L = −
∑
t

logP (w∗t)

The training is done by calculating the gradients via BPTT and then using SGD to update the weight
of the model.

7

6.1.2 Implementation and Results

Implementation Details An existing implementation of the Seq-to-Seq RNN architecture was
taken from: https://github.com/rtlee9/recipe-summarization. We adapted it for use with
the CNN dataset, and trained it on the same.

Results The model generated a ROUGE score of 26.73 on the CNN test set. But, when the trained
model was used to generate summaries from multiple instances of created SuperDocs, the results
weren’t satisfactory at all. The summaries obtained thus lacked coherent structure and mostly failed
to present all the required information as well, presenting some junk instead. This was only checked
qualitatively, as a quantitative measure for the same could not be agreed upon.

6.1.3 Problems

The baseline model as pointed out in Nallaptali et al[5] has a lot of problems :

1. The model failed terribly when asked to produce summaries of length longer than a few
words.

2. It produced summaries that contain repetitive phrases. Since the summaries in this dataset
involve multiple sentences, it is likely that the decoder ‘forgets’ what part of the document
was used in producing earlier highlights.

3. Finally, often-times in summarization, the keywords or named-entities in a test document
that are central to the summary may actually be unseen or rare with respect to training data.
Since the vocabulary of the decoder is fixed at training time, it cannot emit these unseen
words. Instead, a most common way of handling these out-of-vocabulary (OOV) words is to
emit an ‘UNK’ token as a placeholder. However, this does not result in legible summaries.

6.2 Pointer Generator Networks

We first aimed to solve the problem of out-of-vocabulary words by using Pointer Generator Networks
proposed by A. See et al.[4]. This model is an improvement on the simple sequence to sequence
architecture models, designed to overcome its shortcomings. The model uses a hybrid pointer-
generator network that has the ability to point to a word from the document, as well to generate new
words, as and when needed.

6.2.1 Structure of the model

Mechanism In the pointer-generator model, as shown in Figure 3, the attention distribution αt and
context vector ct are calculated as is. In addition, the generation probability pgen ∈ [0, 1] for time
step t is calculated from the context vector and the decoder state :

pgen = σ(Wzzt +Wcct + bias)

This pgen is used as a soft switch to choose between generating a word from the vocabulary by
sampling from Pvocab, or copying a word from the input sequence by sampling from the attention
distribution αt. For each document let the extended vocabulary denote the union of the vocabulary,
and all words appearing in the source document. We obtain the following probability distribution
over the extended vocabulary :

P (w) = pgenPvocab + (1− pgen)
∑

i|wi=w

αit

The ability to produce OOV words is one of the primary advantages of pointer-generator model.

Coverage Now, to handle repetition of phrases in the summary See et al[7] proposed a coverage
mechanism. This involves, maintaining a coverage vector covt which, intuitively, is a (unnormalized)
distribution over the source document words that represents the degree of coverage that those words
have received from the attention mechanism so far.

covit =

t
′
=t−1∑
t′=0

αit′

8

https://github.com/rtlee9/recipe-summarization

Figure 3: Pointer-Generator Mechanism

This coverage vector is used as extra input to the attention mechanism :

eit = vT tanh(Wzzt +Whhi +Wcovcovit + bias)

This ensures that the attention mechanism’s current decision (choosing where to attend next) is
informed by a reminder of its previous decisions (summarized in covt. This should make it easier
for the attention mechanism to avoid repeatedly attending to the same locations, and thus avoid
generating repetitive text.

Loss Function A slight change to the loss function is now needed to penalize the model for
attending to the same weights again and again :

covlosst =
∑
i

min(αit, covit)

Loss =
∑
t

(− logP (w∗t) + λ
∑
i

min(αit, covit))

6.2.2 Implementation and Results

The implementation of the model was taken from https://github.com/abisee/
pointer-generator.

We picked a pre-trained version of the model, trained on the CNN training corpus. The model gave a
ROUGE score of 29.53 when tested on the CNN corpus, which is an improvement in ROUGE score
over any of its ancestoral models. We used this model for the abstractive summarisation step of our
model. The results obtained are not grammatically perfect, but can be seen to match the information
needed.

6.2.3 Problems

The pointer - generator model although good, does have some problems:

1. First, even though the coverage mechanism is used, repetition is still seen in the summaries.
This can be attributed to the fact that the the current word being generated also depends upon
what previous words were generated. So Paulus et al[6] used Intra-Attention on Decoder
outputs which we’ll see in a moment.

2. Secondly, the model, despite of giving a fair chance to both abstractive and extractive aspects
of the summary, ends up being heavily biased towards always throwing out an extractive
phrase resulting in a more or less extractive summary.

9

https://github.com/abisee/pointer-generator
https://github.com/abisee/pointer-generator

6.3 Reinforcement Learning based techniques

6.3.1 A conundrum

A very big problem with the baseline summarization models is during the sampling stage. During
training, we always feed in the correct inputs to the decoder, no matter what the output was at the
previous step. So the problem that this gives rises is that the model doesn’t learn to recover from its
mistakes and assumes that it will be given the golden token at each step in the decoding. This works
fine during training but during test time, we sample the next word from the output of the previous step,
so if the model produces even one wrong word then the recovery is hard. A naive way to do rectify
this problem is to toss a coin with P[heads] = p, during decoding at training time and choose the
token produced at previous step with probability p and the golden output token with probability 1− p.
Now the network can’t always assume that it’ll be given the correct summary and hence learns to
generalize better. In practice, this method gives only slight improvement but impacts convergence.But
very recently Paulus et al[6] have come up with a Reinforcement Learning based training method
that gave huge improvements.

6.3.2 Reinforcement Based Learning

The training in our baseline model is simply word-level supervised training. The model’s aim is to
output the reference summary, so we define a cross entropy loss between the target and the produced
word. But this approach is fundamentally flawed. There are various ways in which the document can
be effectively summarized. The reference summary is just one of those possible ways. Hence,the
model’s aim shouldn’t be just restricted to outputting only the reference summary. There should
be some scope for variations in the summary. This is the essential idea behind the Reinforcement
Learning based training approach. In this approach, during training, we first let the model generate a
summary using its own decoder outputs as inputs. This is essentially sampling as described above.
After the model produces its own summary, we evaluate the summary in comparison to the reference
summary using the ROUGE metric. We then define a loss based on this score. If the score is high
that means the summary is good and hence the loss should be less and vice-versa.

6.3.3 Self-Critical Policy Gradient

For this training algorithm, we produce two separate output sequences at each training iteration:
ys which is obtained by sampling from the p(yst |ys1, . . . , yst−1, x) probability distribution at each
decoding time step, and ŷ, the baseline output, obtained by maximizing the output probability
distribution at each time step, essentially performing a greedy search. We define r(y) as the reward
function for an output sequence y, comparing it with the ground truth sequence y∗ with the evaluation
metric of our choice. (Here, we take it as ROUGE).

The loss function as can be seen below is designed in such a way, that minimizing Lrl is equivalent
to maximizing the log-likelihood of the sampled sequence ys when the reward for ys is greater than
the reward for ŷ. This, therefore prods the model to earn higher reward for ys and therefore a better
ROUGE score is obtained.

Lrl = (r(ŷ)− r(ys))
n∑

t=1

log p(yst |ys1, . . . , yst−1, x)

6.3.4 Augmenting the Loss Function

Simply using Lrl as the loss function tends to bias the model towards simply learning to maximise
ROUGE scores. Because of the inherent problem with ROUGE, this may lead to summaries that are
not human readable. So, to ensure that, we infuse the original teacher-forcing training loss too.We
can interpret it as, RL training giving the summary a global sentence/summary level supervision and
Supervised training giving a local word level supervision. :

Loss = γLrl + (1− γ)Ltf

10

6.3.5 Intra-Temporal and Intra-Decoder Attention

The RL based model also had 2 more unique features that allow this model to overcome the
problem of repetitive summaries that we faced in earlier models. This it does by not only adding an
intra-temporal attention mechanism in the encoder to ensure that the same input word is not attended
over too many times, but a novel decoder attention is also added as mentioned in the problem section
of Pointer-Generator networks.

Intra-temporal Attention The only change this encoder design has when compared to the Seq-to-
Seq RNN model, is that after calculating the raw attention weights eti, we normalize these weights
using the previous attention weights before applying softmax to get αit:

e
′

it =

{
exp eit t = 1

exp eit∑t−1

t
′
=1

exp eit
otherwise

Intra-Decoder Attention Another change that Paulus et al[6] came up with was adding an attention
mechanism in the decoder.The attention weights are calculated ∀zt′ , t

′ ≤ t−1 by the standard method
and a context vector cdecodert gets created now. This slightly changes the equation for calculating the
deccoder hidden state:

zt = f(zt−1, ct, c
decoder
t , yt−1)

6.3.6 Implementation and Results

The implementation of the model was taken from https://github.com/oceanypt/
A-DEEP-REINFORCED-MODEL-FOR-ABSTRACTIVE-SUMMARIZATION

The model was trained on the CNN dataset and obtained a ROUGE-1 score of 37.68 on the results.
Clearly, the model outperforms all its predecessors in terms of generating a abstractive summary.

7 Issues with SuperDoc-based summarisation

Although the abstractive summarisation models worked decently for generating summaries
of news articles from the CNN dataset, their extension to SuperDoc was not very good. It
did extract some relevant details, but was not coherent at all. Also, the abstractive step uptil
now only acts to summarise this created SuperDoc, with no importance given to the query at this stage.

Our SuperDoc approach consists of filtering the input documents according to relevance and
then pass the filtered relevant passages to an abstractive model. We infer from the grammatical
incoherence of the results that this approach cannot adapt well for abstractive methods because the
input that is generated by the filtering process is quite different from the type of documents on which
the abstractive model was trained: it is not a well structured coherent document. Abstractive models
rely critically on the sequential structure of the input to take decision at generation time.

Therefore, we update our proposed method for preserving the document structure while infusing
relevance into the abstractive model during decoding.

8 Injecting Query Relevance in Abstractive Summarisation

All abstractive summary approaches discussed above simply summarize a given input document with
no regard to the query-bias critical to our pipeline. Adding a query bias to the abstractive summary
step is done in the following manner as inspired from Baumel et al[2] :

1. Given a document and a query, we calculate the relevance of each sentence to the query
(which we obtain from the initial part of our pipeline) and use this relevance as an additional

11

https://github.com/oceanypt/A-DEEP-REINFORCED-MODEL-FOR-ABSTRACTIVE-SUMMARIZATION
https://github.com/oceanypt/A-DEEP-REINFORCED-MODEL-FOR-ABSTRACTIVE-SUMMARIZATION

input to the network. The relevance model predicts the relevance of a sentence given the
query.

2. We project the relevance score of sentences to all the words in the sentence to obtain a
word-level relevance score.

3. At each decoding step in the model, we multiply each (unnormalized) attention score of
each word calculated by the model by the pre-computed relevance score.

e
′

it = Reli ∗ eit
where, Reli is the relevance score of wi.

9 The Updated Proposed Method

We use the following simple eager algorithm to produce summaries from multiple documents and
control the length of the output.

1. Retrieve relevant documents for the given query from the entire corpus of documents and
sort the input documents by their relevance score to the query, as calculated by Pylucene.

2. Perform sentence level scoring techniques, as mentioned in Section 4.2, to obtain sentence
level relevance scores and therby obtain word-level relevance scores, as mentioned in section
8.

3. Iteratively summarise the documents, as a whole to maintain the document structure, till the
pre-designated budget of the word limit is reached.

4. Perform redundacy removal steps, as mentioned in section 5, while combining these abstrac-
tive summaries (Rather than combining the relevant passages).

10 DataSet

The dataset used for this project is the CNN news dataset, which is available at https://cs.nyu.
edu/%7Ekcho/DMQA/. This dataset contains the documents from the news articles of CNN. There
are approximately 90k documents. Each document has the following structure:

• The document begins with the CNN story.

• Then, 3-4 highlights, which are human generated single-line summaries of the preceding
article.

Thus, for retrieval purposes:

1. The corpus was created by removing the highlights from each document to give us a corpus
of about 90k documents.

2. The query set was created in the following manner:

• All extracted highlights were placed together. Now, Latent Dirichlet Analysis was used
to discover 50 topics within this corpus of queries.

• Top 6 words of each topic were picked and were treated as a query.
• This gave us 50 query topics to query the corpus on. The queries thus generated were

highly likely to include multiple documents containing relevant information.

Also, for purposes of abstractive summarisation models:

1. The news story in each article was treated as the text document.

2. The collation of all the highlights was treated as a multiple line summary for that document.

3. For the purposes of getting a smaller summary, only the first highlight was taken as the
summary of the document, while the rest of the highlights were discarded.

12

https://cs.nyu.edu/%7Ekcho/DMQA/
https://cs.nyu.edu/%7Ekcho/DMQA/

11 Future Work

There is a great amount of work which can still be done on this project.

• We are still working on perfecting the implementation of the added query bias in the RL
models. This the immediate work that needs attention.

• Hierarchical Attention :Based on the idea that for the summary some sentences are more
important than others. So they use two Bi-Direction RNN to scan the source text, one at
word level and another at the sentence level. Then the calculate word-level attention using
first encoder and sentence level attention using the second encoder. Word level attention is
then weighted by corresponding sentence level attention.

P a
j =

P a
w(j)P

a
s (s(j))∑Nd

k=1 P
a
w(k)P

a
s (s(k))

Here P a(j) is the attention given to word j where it’s corresponding sentence is s(j). P a
w is

the word level attention and P a
s is the sentence level attention.

References
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. CoRR, abs/1409.0473, 2014.

[2] Tal Baumel, Matan Eyal, and Michael Elhadad. Query focused abstractive summarization:
Incorporating query relevance, multi-document coverage, and summary length constraints into
seq2seq models. CoRR, abs/1801.07704, 2018.

[3] Marti A. Hearst. Texttiling: Segmenting text into multi-paragraph subtopic passages. Comput.
Linguist., 23(1):33–64, March 1997.

[4] Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and
Noam Shazeer. Generating wikipedia by summarizing long sequences. CoRR, abs/1801.10198,
2018.

[5] Ramesh Nallapati, Bing Xiang, and Bowen Zhou. Sequence-to-sequence rnns for text summa-
rization. CoRR, abs/1602.06023, 2016.

[6] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive
summarization. CoRR, abs/1705.04304, 2017.

[7] Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. CoRR, abs/1704.04368, 2017.

[8] Josef Steinberger, Karel Jezek, and Yihong Gong. Using latent semantic analysis in text
summarization and summary evaluation. 2004.

[9] Changhu Wang, Feng Jing, Lei Zhang, and Hong-Jiang Zhang. Learning query-biased web page
summarization. In Proceedings of the Sixteenth ACM Conference on Conference on Information
and Knowledge Management, CIKM ’07, pages 555–562, New York, NY, USA, 2007. ACM.

[10] Y. Zhang, M. J. Er, and M. Pratama. Extractive document summarization based on convolutional
neural networks. In IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics
Society, pages 918–922, Oct 2016.

13

	Introduction
	The Proposed Method
	Document Level Retrieval
	Relevant Passage Extraction
	TextTiling
	Sentence Scoring Approaches
	TfIdf approach
	Luhn's Clustering Approach
	LSA based approach

	Redundancy Removal And SuperDoc Creation
	Abstractive Summary Generation
	Seq-to-seq RNN
	Structure of the model
	Implementation and Results
	Problems

	Pointer Generator Networks
	Structure of the model
	Implementation and Results
	Problems

	Reinforcement Learning based techniques
	A conundrum
	Reinforcement Based Learning
	Self-Critical Policy Gradient
	Augmenting the Loss Function
	Intra-Temporal and Intra-Decoder Attention
	Implementation and Results

	Issues with SuperDoc-based summarisation
	Injecting Query Relevance in Abstractive Summarisation
	The Updated Proposed Method
	DataSet
	Future Work

